Signal peptide peptidase (SPP) assembles with substrates and misfolded membrane proteins into distinct oligomeric complexes
نویسندگان
چکیده
SPP (signal peptide peptidase) is an aspartyl intramembrane cleaving protease, which processes a subset of signal peptides, and is linked to the quality control of ER (endoplasmic reticulum) membrane proteins. We analysed SPP interactions with signal peptides and other membrane proteins by co-immunoprecipitation assays. We found that SPP interacts specifically and tightly with a large range of newly synthesized membrane proteins, including signal peptides, preproteins and misfolded membrane proteins, but not with all co-expressed type II membrane proteins. Signal peptides are trapped by the catalytically inactive SPP mutant SPPD/A. Preproteins and misfolded membrane proteins interact with both SPP and the SPPD/A mutant, and are not substrates for SPP-mediated intramembrane proteolysis. Proteins interacting with SPP are found in distinct complexes of different sizes. A signal peptide is mainly trapped in a 200 kDa SPP complex, whereas a preprotein is predominantly found in a 600 kDa SPP complex. A misfolded membrane protein is detected in 200, 400 and 600 kDa SPP complexes. We conclude that SPP not only processes signal peptides, but also collects preproteins and misfolded membrane proteins that are destined for disposal.
منابع مشابه
Molecular insights into mechanisms of intramembrane proteolysis through signal peptide peptidase (SPP).
The processing of membrane-anchored signalling molecules and transcription factors by RIP (regulated intramembrane proteolysis) is a major signalling paradigm in eukaryotic cells. Intramembrane cleaving proteases liberate fragments from membrane-bound precursor proteins which typically fulfil functions such as cell signalling and regulation, immunosurveillance and intercellular communication. F...
متن کاملA misassembled transmembrane domain of a polytopic protein associates with signal peptide peptidase.
The endoplasmic reticulum (ER) exerts a quality control over newly synthesized proteins and a variety of components have been implicated in the specific recognition of aberrant or misfolded polypeptides. We have exploited a site-specific cross-linking approach to search for novel ER components that may specifically recognize the misassembled transmembrane domains present in truncated polytopic ...
متن کاملCysteine residues in the transmembrane regions of M13 procoat protein suggest that oligomeric coat proteins assemble onto phage progeny.
The M13 phage assembles in the inner membrane of Escherichia coli. During maturation, about 2,700 copies of the major coat protein move from the membrane onto a single-stranded phage DNA molecule that extrudes out of the cell. The major coat protein is synthesized as a precursor, termed procoat protein, and inserts into the membrane via a Sec-independent pathway. It is processed by a leader pep...
متن کاملCore protein cleavage by signal peptide peptidase is required for hepatitis C virus-like particle assembly.
Hepatitis C virus (HCV) core protein, expressed with a Semliki Forest virus replicon, self-assembles into HCV-like particles (HCV-LP) at the endoplasmic reticulum (ER) membrane, providing an opportunity to study HCV assembly and morphogenesis by electron microscopy. This model was used to investigate whether the processing of the HCV core protein by the signal peptide peptidase (SPP) is require...
متن کاملCleavage by signal peptide peptidase is required for the degradation of selected tail-anchored proteins
The regulated turnover of endoplasmic reticulum (ER)-resident membrane proteins requires their extraction from the membrane lipid bilayer and subsequent proteasome-mediated degradation. Cleavage within the transmembrane domain provides an attractive mechanism to facilitate protein dislocation but has never been shown for endogenous substrates. To determine whether intramembrane proteolysis, spe...
متن کامل